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A nonlinear diffusion process modelling aggregative dispersal is combined with local
(in space) population dynamics given by a logistic equation and the resulting
growth-dispersal model is analysed. The nonlinear diffusion process models
aggregation via a diffusion coefficient, which is decreasing with respect to the
population density at low densities. This mechanism is similar to area-restricted
search, but it is applied to conspecifics rather than prey. The analysis shows that in
some cases the models predict a threshold effect similar to an Allee effect. That is, for
some parameter ranges, the models predict a form of conditional persistence where
small populations go extinct but large populations persist. This is somewhat
surprising because logistic equations without diffusion or with non-aggregative
diffusion predict either unconditional persistence or unconditional extinction.
Furthermore, in the aggregative models, the minimum patch size needed to sustain
an existing population at moderate to high densities may be smaller than the
minimum patch size needed for invasibility by a small population. The tradeoff is
that if a population is inhabiting a large patch whose size is reduced below the size
needed to sustain any population, then the population on the patch can be expected
to experience a sudden crash rather than a steady decline.

1. Introduction

1.1. General introduction

Various types of organisms form aggregations (swarms, flocks, herds, etc.) for vari-
ous reasons. There has been a considerable amount of work on modelling the process
of aggregation and studying its effects on interactions between species. In this arti-
cle we consider the effects of intraspecific aggregation on the population dynamics
of a single species. We model aggregation with a density-dependent diffusion pro-
cess where the rate at which individuals move is decreased by the presence of
conspecifics, at least at low densities. That mechanism is similar to area-restricted
search, except that individuals are envisioned to be searching for conspecifics rather
than prey or other resources. Such mechanisms may be deduced from empirical
considerations. For example, Turchin [21] gives an example in one space dimen-
sion appropriate for insects that use visual cues to orient upon conspecifics. We
then couple the aggregative dispersal mechanism with local population dynamics
described by a simple logistic equation and analyse the dynamics of the resulting
model. Because the model is order preserving, it turns out that its dynamics are
largely determined by its equilibria, so most of our analytic efforts are devoted to
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studying those equilibria and their stability properties. We conclude that aggrega-
tive dispersal can have qualitative effects on population dynamics, which cannot
be induced by passive diffusion or by diffusive dispersal with mutual avoidance. In
particular, even though the local population dynamics at any spatial location are
assumed to be logistic, the global dynamics of aggregative models may display an
Allee effect. In other words, although the local population dynamics would predict
either extinction or unconditional persistence for a population restricted to a sin-
gle location, the full model sometimes predicts conditional persistence, where any
sufficiently large population will persist but where small populations will go extinct.

A good general discussion of modelling animal aggregation is given by Griinbaum
and Okubo [9]. Some discussion of the reasons why aggregation might be adaptive
is given in [2,19]. There has been much theoretical work on the effects of aggrega-
tion on competitive or host—parisitoid interactions (see [20] and [10], respectively,
and the references therein). The formulation of continuum models for aggregation is
described in [9], and treated in some detail in [7,8]. An example of a model involv-
ing area restricted search is carefully constructed in [13]. Alternatively, a spatially

discrete model is derived in [14}

In [3], we studied logistic equations with density-dependent diffusion and found
that if the diffusion rate increased with density, the predictions of the models were
qualitatively the same as those for logistic equations with passive diffusion. Specifi-
cally, we considered a population inhabiting a bounded region with a hostile exterior
and found that the models either predicted persistence for any population (if the
region was large, the diffusion rate was small, and/or the local growth rate was
large) or extinction for any population (if the region was small, the diffusion rate
was large, or the local growth rate was small). However, as we shall show in the
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the models predict conditional persistence in some cases. In other words, they may
predict persistence for large initial populations but extinction for small.

In the remainder of this section we describe the models and state some back-
ground results. In the next section we perform the mathematical analysis of the
models. That section is somewhat technical. In the last section we give a discussion
of the implications of our general results in the context of a specific model. We
conclude with a non-mathematical discussion of the implications of the results.

1.2. Models and results of previous analysis

The models we consider describe scenarios in which a population inhabits a
bounded region (2 with lethal exterior, grows logistically within the region, and
disperses through the region via a diffusion process (i.e. by random walks) in which
the rate of dispersal depends on the population density. We shall write the logistic
part of the model as

du

dt
where u represents the population density, m(z) is a spatially varying local growth
rate, and ¢ measures the strength of logistic self-limitation. The diffusive part of
the model will be written as

= m(z)u — cu?, (1.1)

ou

5 V - d(z,u)Vu, (1.2)
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where again u represents population density. In (1.2), the coefficient d(z,u) rep-
resents the diffusion rate. Recall that this coefficient is proportional to the mean-
square distance that an individual moves in unit time (see [16]). We shall assume
that the diffusion rate remains strictly positive but at low densities decreases with
population density. This assumption reflects a tendency for the population to aggre-
gate, because individuals slow their rate of random movement in the presence of
conspecifics if the density of conspecifics is not too high. The mechanism is similar
to the use of area restricted search by predators, which has been shown to induce
aggregation by predators at locations with high prey density [13]. The difference is
that instead of responding to prey density, individuals are assumed to respond to
the density of conspecifics [21]. We can assemble our model from the terms in (1.1)
and (1.2) to obtain

ou 2 i
5 = V- d@uVu+Nm(eyu—cu?]  in 2 (0,00), (1.3)
w=0 on 812 x (0, 0),

where the condition on 82 corresponds to the assumption that the exterior of 2
is lethal. If we start with A = 1 in (1.3) and rescale by T = /72, £ = z/, then we
obtain an equation equivalent to

B4 - V- dlo )V + Pl - ). (14)
Thus, if d and m do not depend on z, we can interpret A as arising from expanding or
contracting the spatial region {2 by a factor v and then rescaling time appropriately.
(Large A would correspond to a large region, small A to a small region. For d
and m independent of x, rescaling the size of the domain (2 is mathematically
equivalent to rescaling the diffusion coefficient while leaving the size of {2 fixed.)
In general, A measures the ratio of the respective rates of population growth and
dispersal throughout {2, with large A corresponding to a high growth rate relative
to movement rate.

Throughout this paper we shall assume that the coefficients of (1.3) are smooth
enough that the classical theory of parabolic partial differential equations and the
elliptic equations describing their equilibria can be applied. That will typically
require that m(z) is Holder continuous and that d(z, ) and its first derivatives are
Holder continuous. An important feature of (1.3) is that it is order preserving, that
is, if u; and us are solutions with u1(z,0) > ua(z,0), then ui(z,t) > ua(z,t) with
strict inequality for z € §2 unless u3 (z,0) = uz(z, 0). It follows (among other things)
that almost all trajectories of (1.3) have w-limit sets that are subsets of the set of
equilibria of (1.3) (see [3,12]). Hence it is sensible to study the behaviour of (1.3)
in terms of its equilibria. It turns out that to describe the set of equilibria of (1.3),
we must introduce & related eigenvalue problem obtained by linearizing (1.3) about
4 = 0, namely

~V -d(z,00V¢ = dm(z)¢  in £, } (1.5)

=0 on 8{2.

We have the following lemma [11,15] (see also [3]).
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LeMmMa 1.1. If m(z) > 0 on an open subset of 2, then (1.5) admits a unique
positive principal eigenvalue A\ (d(z,0),m), which is characterized by having an
eigenfunction ¢(z) > 0 on 2. All other positive eigenvalues of (1.5) are larger than
X (d(z,0),m).

In [3], we obtained results equivalent to the following.

THEOREM 1.2. Assume that m(z) > 0 on an open subset of 2 and that d(z,u) >
do > 0 for some constant dy. If d(z,u) is non-decreasing in u, then

() if A < X (d(z,0),m), then all positive solutions to (1.3) approach zero as
t — 00;

(i) if A > A (d(=,0),m), then (1.8) has a unique positive equilibrium u* that is
globally aitracting among positive solutions.

We also observed in [3] that in a simple example where d(z,u) is decreasing in u,
the above theorem is no longer valid. The present article was in part prompted by
the example. However, we only assume here that the diffusion rate decreases with
population density when the population density is low. Our model allows for the
diffusion rate to increase in response to overcrowding.

Before we proceed to the analysis of (1.3) in this case, one more result is worth
mentioning. The stability of the equilibrium % = 0 in (1.3) is determined by the
sign of the principal eigenvalue oy of

V-d(z,0)V¢+ Im(z)yp =o¢p  in £, ¥ (1.6)

ah — N nn AN
o - .

(The principal eigenvalue of (1.6) is the largest eigenvalue of (1.6) and is charac-
terized by having an eigenfunction ¢ > 0 on £2.) If o7 < 0 in (1.6), then v = 0 is
locally stable; if 01 > 0, then u = 0 is unstable.

LEMMA 1.3. Suppose that m(z) > 0 on an open subset of 2. If A > AT (d(z,0),m),
then oy > 0 in (1.6). If A < AT (d(z,0),m), then a1 < 0.

DiscussioN. This follows from the remarks in (3, p. 1049].

2. Analysis of equilibria

In this section, we establish the mathematical background needed to justify the
conclusions we draw concerning the ecological implications of the model (1.3). To
do so, as noted in §1, we may focus our attention on the non-negative equilibria
of (1.3). To this end, we find it useful to regard the d{z,u), m(z) and ¢ parameters
in (1.3) as fixed (though subject to additional appropriate hypotheses) and analyse
the resulting parameter-equilibrium pairs (A, u) as a subset of the Cartesian product
R x X, where X is a suitable space of functions. If we assume that d is continuously
differentiable in z and v with Holder continuous partial derivatives of exponent «,
and that m is Hélder continuous in z of exponent a, we may take X = CaT*(£2),
the space of twice continuously differentiable functions on {2 that vanish on 842 and
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whose second partial derivatives are Holder continuous of exponent o. We may then
regard the parameter-equilibrium pairs (A, u) as solutions to the operator equation

F(\u) =0, (2.1)
where F : R x C2T*(2) — C*(£2) is given by
FO\u) =V - (d(z,uw)Vu) + Nm(z)u — cu?]. (2.2)
The analysis needed to describe the set
{(\u) eRxCH*(0) : F(A\,u) =0and u >0 on 2}

divides into three parts. First, we use global bifurcation theory to establish that a
continuum C of pairs (A, u) with » > 0 on {2 emanates from the ‘trivial’ solutions
(A, 0) at the point (A (d(z,0),m),0). We then make a local analysis of C near the
point (AF (d(z,0),m),0) to show that initially C ‘bends to the left’ in the parameter
space ), so that there are pairs (\,u) with A < Af(d(z,0),m) and u > 0 in £2.
Finally, we determine the linearized stability of the equilibrium u of (1.3) for all
(A, u) in a neighbourhood of (A\{ (d(z,0),m),0), augmenting the result of lemma 1.3.

Tt is clear from a comparison with theorem 1.2 that some additional hypotheses
are necessary if the preceding description of

{Oyu) eRx C2Y*(02) : F(\,u) =0and u > 0 on 2}

is to hold. To this end, for the remainder of this section, we shall assume the
following.

ASSUMPTIONS 2.1.
(i) d(z,u) is C*** in  and C® in u for (z,u) € 2 x R;
(i) m(z) is C* for z € 2
(iii) ¢ is a positive constant;
(iv) d(z,u) > do > 0 for (z,u) € 2 X R;
(v) du(z,0) <0 for z € £2;
(vi) m(zo) > 0 for some zg € £2.

Key among the above assumptions are (iv) and (v). In the aforementioned article
of Turchin [21],

2k
d(u) = %/j, — Qk‘gu -+ —(;9"11/2,

where 1, ko and w are positive constants. It is immediate that d’'(0) = —2ko, so that
assumption (v) is met. Moreover, d(u) is quadratic in u with positive leading coef-
ficient 2kg/w. Since the discriminant for d(u) is 4kg(ko — p/w), assumption (iv) will
be met, provided that p/w > ko. Note also that we have strengthened the regularity
hypothesis on d to have d thrice continuously differentiable in u, so that we can
apply the results in [3] verbatim at a crucial point in our analysis. We acknowledge
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that results comparable to those we establish in this section can be derived under
less restrictive regularity assumptions on d and m. However, our assumptions are
certainly reasonable. Moreover, they allow for a mathematical presentation that is
as accessible as possible, which we believe well deserves a biomathematical audience.

The ‘global structure’ of the set as a subset of R x C27%((2) follows from [3] (see
also [18]), and we may gather the pertinent results in the following.

THEOREM 2.2. Assume that assumptions 2.1 hold. Then the closure of the set
{Ou) €R x C2H(2) : F(\,u) =0 and u(z) > 0 in 2}
contains a connected and locally compact subset C with the following properties:
(i) (A,0) € C only when X = X (d(z,0),m);
(i) if A =inf{\ € R: Ju € C3T*(Q2) such that (\,u) € C}, then A > 0;
(iif) for all X\ > ), there ezists u € C3T*(02) with u > 0 in 2 so that (\,u) € C.

REMARK 2.3. C is referred to as a continuum in the bifurcation theory literature,
C is unbounded as a subset of R x C2+%(2), by virtue of the fact that there is
(A u) € C for all A > \. However, the maximum principle [17] guarantees that for
any (A\,u) € C,

o) < Eize ()

so that there is a uniform upper bound on the equilibrium components along C.

REMARK 2.4. There can be no arbitrarily small positive equilibria to (1.3) except
for A near the critical value AT (d(z,0), m).

REMARK 2.5. If assumption 2.1 (v) is replaced by the condition that d(z,u) is
non-decreasing in u, then theorem 1.2 holds. In this case, A = A} (d(z,0),m) and
for each A > ), there is a unique positive u € Ca+t*(£2) such that (\,u) € C.
In this situation, C can be regarded as the graph of a smooth mapping from
[A, 00) = [A1(d(z,0),m), 00) into the function space C2T*(f2) which takes the zero
function as its value at . Moreover, for each A > Af(d(z,0), m), the corresponding
u is the global attractor for non-negative non-trivial solutions to (1.3).

REMARK 2.6. As noted in §1, theorem 1.2 is no longer valid if assumptions 2.1
are imposed and it may indeed be the case that A < A} (d(z,0),m). In such a
situation, problem (1.3) admits positive equilibria for A below the critical threshold
X (d(z,0),m).

The next portion of our analysis of the positive equilibria of (1.3) seeks to iden-
tify conditions on d(z,u), m(z) and c that will guarantee the existence of positive
equilibria for (1.3) for A < Af(d(z,0),m). A natural way to approach this task
is to examine more closely the structure of C near (A} (d(z,0),m),0), i.e. make a
local bifurcation analysis around the bifurcation point in the parlance of bifurcation
theory. For then, if C ‘bends to the left in parameter space’ at (A} (d(z,0),m),0),
it must be the case that A < Af (d(z,0),m). The proper tool for the job is the well-
known constructive bifurcation theorem of Crandall and Rabinowitz [5], which is
applicable under the hypotheses of assumptions 2.1 and guarantees the following.
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THEOREM 2.7. Assume that assumptions 2.1 hold. Let ¢1 denote the unigque posi-
tive solution of (1.5) satisfying

/{2¢%=1-

Then there is an interval (—Sq, so) about 0 in R and two twice continuously differ-

entiable functions ¢ : (—sg, 80) — CaT*(2) and p: (—so, 80) — R such that

(1) #(0) =0 =¢'(0);
(i) p(0) =0;

(ii)) (AT (d(z,0),m)+pu(s), sg1+¢(s)) give all non-trivial solutions to F(A,u) =0
in a neighbourhood of (\f (d(z,0,m),0) in R x Ca+t*(£2).

REMARK 2.8. The choice of ¢; and condition (i) of theorem 2.7 guarantee that
near (A\f(d(z,0),m),0), C is described by (iii) for s € [0, so).

REMARK 2.9. C ‘bends to the left in parameter space’ if p/(0) < 0.
We next calculate p/(0).

LEMMA 2.10. p/(0) satisfies the equation
0= [ dulo, 04190 - 0 [ mio)gt+ 3@ 0m) [ el @3

Proof. Substitute (A\] (d(z,0),m) + pu(s), s¢1 + ©(s)) into F(A,u) = 0, differentiate

twice with respect to s and evaluate at s = 0. Then " (0) € Ca™*({2) satisfies
— V- (d(z,0)V¢"(0)) = Af (d(z, 0), m(z))m(z)¢" (0)
=2(V - (du(z,0)$1 V1) + 1/ (O)m(z) b1 — Arce?). (2.4)

Multiplying (2.4) by ¢1, integrating over {2 and employing Green’s second identity
yields

0= —L%V . (du(.’E,O)‘gblV(ﬁl) —‘p'(O)/ﬂm(m)(b% + )\{L(d(x,o),m)/ﬂc(p? (2.5)

By applying the divergence theorem to the first term on the right-hand side of (2.5),
we obtain (2.3). 0

We now consider (2.3). It follows from (1.5) that

/ d(z,0)|Ve|? = NF (d(x, 0),m) / m(z)82,
2 2

80 that
/ m(z)$? > 0
”
and
fg du(m’ 0)¢1iv¢1i2 + ’\T(d(ma 0)1 m) fg C(ﬁ? .

'UI,(O) - fg m(x)d’%

(2.6)
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Consequently, 1/(0) < 0 if and only if the numerator on the right-hand side of (2.6)
is negative. We hypothesize in assumption 2.1 (v) that dy(z,0) < 0 on 2. There are
several ways in which one can refine this hypothesis to obtain a sufficient condition
guaranteeing that p'(0) < 0. We illustrate two of them. If

dy(z,0) < did(z,0), where d; <0, (2.7

then

! Jo d(2,0)6:1|V1|? + A (d(z,0),m) [, cé}

Consider [, d(z,0)¢1|V¢:1|?. By (1.5), we have

4/(0) (2.8)
~V - (d(z,0) V1) = AT (d(z, 0), m)m(z)¢;

on §2. Multiplying by ¢? on both sides, integrating over 2 and employing the
divergence theorem yields

[ 40V - 991 = Xt (s, 0),m) [ mi@)st (2.9)
2 2
Since V(¢?2) = 2¢1 V1, it follows from (2.9) that

| o000Vl = 435 ((a,0),m) [ m(a)et. (2.10)
2 n

We have from (2.8) and (2.10) that 4/(0) < 0 if

/Q (dym(z) + 2¢)¢3 < 0. (2.11)

If now m(z) > mgp > 0 on §2, equation (2.11) obtains if
diymg +2¢ < 0. (2.12)

Note that if dy(z,0) = did(z,0) and m(z) = mg,

0) =t (@@, 0m) (3 + =) [ 2

which is negative if and only (2.12) holds, making (2.12) a sharp condition in this
case.
Another way to refine assumption 2.1 (v) is simply to assume

du(z,0) < do < 0. (2.13)
If (2.13) holds, then

do [ $1|V1[? + X (d(,0),m) [, cg$
[om(z)83 '

#(0) < (2.14)
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Observe that
/ 61|Vi]? = / $7V ¢, - 12V,
2 2
- [ 1avee
ked
=5 [ et
> $30(2) /ﬂ (%)
=%€)\O(‘Q)/‘Q¢§7

where \g(£2) > 0 is the principal eigenvalue of the Laplace operator on {2 subject
to homogeneous Dirichlet boundary conditions. From (2.14) and the inequality

[ aiva > @ [ 6t (215)
2 e
we have that u'(0} < 0, provided

2doNo(R2) + Af (d(z,0),m)c < 0. (2.16)

Summarizing, we have the following result.
THEOREM 2.11. p/(0) < 0 if either
(i) equations (2.7) and (2.11) hold; or
(i) equations (2.18) and (2.16) hold.

As we have noted, problem (1.3) admits positive equilibria for A below the critical
threshold A} (d(z,0),m), provided '(0) < 0. In fact, in this case, the connectivity of
C, the existence of a positive equilibrium for (1.3) when A = A} (d(z,0), m) and the
representation of C near (A (d(z,0),m),0) in theorem 2.7 collectively imply that
there is an interval (\*, A} (d(z,0),m)) in X such that if A € (A*, Af (d(z,0),m)),
problem (1.3) admits at least two positive equilibria.

In the last portion of our analysis of the positive equilibria of (1.3), we focus
on the asymptotics of (1.3) for A close to but below Af (d(z,0),m). We know from
lemma 1.3 that the 0 equilibrium is stable for such A. To proceed further, we
formulate some eigenvalue problems. Notice that

F.(Ozuw)¢ =V - (d(z,u)Ve) + V - (du(z, u)pVu) + A[m(z)¢ — 2cug]  (2.17)

for ¢ € Cat*(£2). When u = 0, equation (2.17) reduces to
Fu(\,0)¢ =V - (d(z,0)V¢) + Am(z)d. (2.18)
Let o()\,u) denote the principal eigenvalue for (2.17), i.e. o = oA, u) is the unique

real number for which
Fu()‘v'U’)d):U(p in £2, }

¢=0 on 812 (2.19)
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admits an eigenfunction ¢ with ¢ > 0 in 2. Lemma 1.1 shows that

o(AF (d(z,0),m),0) = 0.

If o(A,u) > 0 and ¢ > 0 is a corresponding eigenfunction in (2.19), [4] shows

that for all sufficiently small € > 0,
e\ ) = u+ e~ 52%%&

is a lower solution to F'(A,u) = 0 viewed as an elliptic differential equation, and,
consequently, that if 4. (2, t) is the solution to (1.3) with @.(z,0) = we (), u)(z), then
fie (%, t) is monotonically increasing in ¢ with lim;_,co e (%, t) = @(z), where 4(z) is
a positive equilibrium to (1.3) such that %(z) > u(z) on {2 (see also [1]). Since (1.3)
is order preserving, if w is a solution to (1.3) with w(z,0) > we(A,u)(z), then
w(z,t) > te(z,t) for all t > 0. Hence, for any § € (0,1), w(z,t) > (1 — §)a(z) for
all z € (2 and all sufficiently large ¢. Consequently, if there is a positive equilibrium
u for (1.3) for some A < Af(d(z,0),m) with the property that o(\,u) > 0, the
asymptotics for (1.3) for that A are dramatically different from the case described
in theorem 1.2. In the next section we analyse in detail the ecological ramifications
of such a phenomenon.

All that remains to be seen is whether we can find parameter-equilibrium pairs
(A, u) with A < A} (d(z,0),m) and o(),u) > 0. To this end, for s € [0, so), let

o(s) = o(X{ (d(=,0),m) + p(s), s¢1 + ¢(s)), (2.20)

where
(ZNF(Al» M frn) Aol eN o, LAl YN
FAEAN AY 4 4!

N A R N R B LY A v )

is the parametrization of C near (A} (d(z,0),m),0) given in theorem 2.7. In [6], the
sign of o(s) for s near 0 is related to the rate of change of the A\ component of C
with respect to s (du/ds(s)) and the rate of change of o(),0) with respect to A at

X = X (d(z,0),m) (g-;zu;r(d@, 0),m), 0)).

Specifically, . 5
sgn(o(s)) = sgn ('—s(—ig-(s)a—g\r—()\f(d(w, 0),m), 0)) . (2.21)

If duu/ds(0) < O (as may be guaranteed by theorem 2.11), du/ds(s) < 0 for s > 0
and sufficiently small. Consequently, it follows from (2.21) that o(s) > 0 for all

5 > 0 and sufficiently small, provided that we find that
oo, .
EX()‘l (d(m,O),m),O) > 0.

Consequently, we conclude this section with a proof of this fact.
PROPOSITION 2.12. Let o = o()A,0) denote the unique real value, so that

E,(\ 0 =0 in 1,
o=0 ondN2



Conditional persistence 277

admits an eigenfunction ¢ > 0. Then
do . 4
—a"X()‘l (d(.’z,O),m),O) > 0.
Proof. Suppose for all A that ¢ is normalized by requiring
/ ¢ = 1.
e
Then ¢ = (0¢/0X)(),0) and oy = 0o /0 exist and we may calculate
O
—3—)\' (A-li_ (d(CL‘, 0): m)v O)
from F,(),0)¢ = 0. Differentiating F,,(),0)¢ = 0 with respect to A yields

V - (d(z,0)Va) + m(z)¢ + Am(z)dr = oad + oda. (2.22)
Multiplying (2.22) by ¢, integrating and applying the divergence theorem yields

/ dA(V - d(z,0)Ve + Am(z)d) + / m(z)¢? =ox +0 / b, (2.23)
2 ] i}

[(2452:1.

Since F,(X,0)¢ = o0¢ = o(A,0)¢, equation (2.23) simplifies to

a,\=/nm(m)¢2.

as

Hence 5
o (X (s, 0),m),0) = [ mia)et
o) 0
which we observed to be positive following the proof of lemma 2.10. [
Summarizing, we have the following result.

THEOREM 2.13. Suppose assumptions 2.1 hold, (\f (d(z,0), m)+u(s), sgp1+p(s)) is
as in theorem 2.7 (iii), and that 1/ (0) <'0. Then if o(s) is as in (2.20), o(s) > 0 for
s > 0 and sufficiently small. Consequently, there is an interval (\**, AT (d(z, 0), m))
in R such that, for A € (\**, A\F (d(z,0),m)), problem (1.3) admits a minimal posi-
tive equilibrium u = u()\). Moreover, for such ), there is an equilibrium @ of (1.3)
with @ > u on £2, so that, for any § € (0,1) and any solution w of (1.8) with w(z,0)
strictly larger than u(z) on (2, there is a T such that that w(z,t) > (1 - §)i(z) on
2 fort>1t.

REMARK 2.14. The notion ‘w(z,0) strictly larger than u(z) on {2’ means that
w(z,0) exceeds u(z) on 2 and that the outer normal derivatives (Ow/8n)(z,0)
and (Ou/0n)(z) on Of2 satisfy

ow ou

5;(3:,0) < (—95(:1:) <0.
For such a w, there is a € > 0 such that w(z,0) > w.(\, u)(z), and it is then evident
that the last statement in theorem 2.13 is correct.
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3. Discussion

3.1. A simple example

To explicate the results of § 2, let us consider the model

%_15 = %(d(u)%) +'r'<l - %)u on (0,£) x (0, 00),

(3.1)
u(0,t) =u(f,t) =0 fort>0.
By rescaling space via £ = /£ as in § 1, model (3.1) becomes
ou 18 Ou U

©w(0,t) =u(1,t) =0 for ¢t >0,

where u should now be interpreted as wu(£,t). The equilibrium problem can be
written as

0= %(d(u)?—?) L P <7"u, - -};-u?) in (0,1),

u(0) =u(1) =0.

(3.3)

We can now identify the parameters as A = £2, m =r and ¢ = r/K. Also, since d(u)
does not involve z, we see that d(0) and d,(0) are constants. We have A (d(0),r) =
d(0)w?/r and we may choose ¢;(¢) = sin(#¢). Thus the condition for invasibility of
the habitat, i.e. the condition for the equilibrium u = 0 to be unstable, is

/AN D
U;\U}‘/!

T

2> (3.4)
This is the standard formulation for the minimum patch size that will sustain a
population in the case of diffusion without density dependence (see [3] and the
references therein).If we allow density dependence, then we may compute u’(0)
via (2.6) to obtain

o 4T 2(0)
§(0) = 3 |au(0) + 220, (35)
so that u'(0) satisfies
/ . o du(0) 2
©'(0) <0 if and only if 400) <-% (3.6)

Finally, if do = infy>0 d(u), then the argument used in corollary 3.2 of [3] shows
that no positive equilibrium can exist in (3.3) and hence for (3.1) unless

2
2 > \FH(do,r) = d"T’T. 37)

The analyses of [3] and the previous section now imply that for £ > (1/d(0)/r),
the equilibrium u = 0 of (3.1) is unstable, so that the habitat is invasible, i.e. popu-
lations at low densities will increase. For such values of £, the model predicts uncon-
ditional persistence. If dy,(u) > 0, then for £ < 7+/d(0)/r, all solutions to (3.1) will
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approach zero as £ —» co, so that the minimum patch size for invasibility is the
same as the minimum patch size that can sustain a population [3]. However, if
d,,(0)/d(0) < —2/K, then there will be a value £y € [\/do/r™, \/d(0)/rm) such that
for £ < £ < +/d(0)/rm the equilibrium u = 0 will be stable, so small populations
will die out, but there will be at least two positive equilibria. For values of £ close
to, but slightly less than, 1/d(0)/rn, the smallest positive equilibrium will be unsta-
ble in the sense that any solution of (3.1) that is initially larger than the minimal
positive equilibrium will remain larger for all time and will be bounded below by a
solution that will increase toward the second smallest positive equilibrium. Thus,
in that case, the model predicts a type of conditional persistence analogous to that
found in models with an Allee effect built into the terms describing local popula-
tion dynamics. Also, in this situation, the model displays a ‘hysteresis’ effect in the
sense that if there is a large population inhabiting a large patch and £ is reduced,
the population may remain relatively large even as £ is decreased below +/d{0)/rm,
so that the patch is no longer invasible, but then experience a sudden collapse if ¢
is decreased further so that £ < £5. The closer 4y is to 1/d(0)/rn, the more sudden
will be the onset of such an irrevocable collapse.

4. General conclusions

4.1. Conditional persistence via aggregation

Non-spatial logistic models and logistic models augmented by dispersal via pas-
sive diffusion can only predict unconditional persistence or extinction; that is, they
either predict persistence for any population with a positive initial density or extinc-
tion for any population [3]. If a logistic model is augmented by dispersal via a
density-dependent diffusion process, where individuals disperse more slowly in the
presence of conspecifics at low densities, it may predict conditional persistence for
some parameter ranges. In other words, the model may predict extinction for pop-
ulations with low initial densities but persistence for populations with high initial
densities. This sort of behaviour is typical of population models where an Allee
effect is built into the description of the population dynamics, but in our models
the population dynamics are assumed to be logistic, so the effect is induced only
because of the aggregative density-dependent dispersal. A biological interpretation
of the mechanism is that at low population densities individuals disperse rapidly
and are likely to encounter the hostile exterior of their habitat, while at slightly
higher densities they disperse less rapidly and thus experience reduced mortality
due to dispersal into hostile environments. If that effect is sufficiently strong relative
to the logistic effect of intraspecific competition, then the net population growth
rate may be greater at moderately high densities than at low densities. If the net
population growth rate is positive at moderately high densities and negative at low
densities, then the model predicts conditional persistence.

Both logistic models with passive diffusion and logistic models with density-
dependent aggregative diffusion predict a minimum size for a patch with a lethal
boundary to be able to sustain a population. However, density-dependent diffu-
sion can change the minimal patch size and the way in which a stable population
equilibrium behaves as patch size decreases. In the case of passive diffusion, the sta-
ble equilibrium density decreases smoothly toward zero as the patch size decreases
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toward the minimum size that allows population growth at low densities. In the
case of aggregative density-dependent dispersal, there can be stable equilibria with
relatively large population densities, even though the patch size is decreased below
the minimum size that would allow population growth at low densities. However,
if patch size is decreased further, then the population may collapse suddenly to
zero. Furthermore, if the population is at a stable equilibrium in a patch that is too
small to allow population growth at low densities, and the population is reduced
by a catastrophic event such as an epidemic or natural disaster, it may not be able
to recover.

The mechanism by which an aggregating population may be able to maintain
a positive equilibrium density on a patch that is too small to allow growth at
low densities is the formation of aggregations that are far enough from the lethal
patch boundary to avoid its deleterious effects. Such aggregations can only form if
the density is sufficiently high. At low densities, the population will disperse more
rapidly and thus encounter the lethal boundary. However, if patch size decreases
further, aggregation will no longer insulate the population from the effects of the
boundary, and a collapse may ensue.
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